Pagina:Gauss, Carl Friedrich - Werke (1870).djvu/54

Haec pagina emendata est
44
de residuis potestatum.

ponentis congruae sint unitati. Hinc patet, omnes numeros ad exponentem pertinentes inter residua minima numerorum reperiri. Quales vero sint, quantaque eorum multitudo, ita definitur. Si est numerus ad primus, omnes potestates ipsius , quarum exponentes , unitati non erunt congrui: esto enim (vid. art. 31) eritque ; quare si potestas ipsius unitati esset congrua atque , foret etiam et hinc contra hyp. Hinc manifestum est, residuum minimum ipsius ad exponentem pertinere. Si vero divisorem aliquem, , cum communem habet, ipsius residuum minimum ad exponentem non pertinet; quoniam tum potestas iam unitati fit congrua (erit enim per divisibilis, sive adeoque ). Hinc colligitur, totidem numeros ad exponentem pertinere, quot numerorum ad sint primi. At memorem esse oportet, hanc conclusionem innixam esse suppositioni, unum numerum iam haberi ad exponentem pertinentem. Quamobrem dubium remanet, fierine possit ut ad aliquem exponentem nullus omnino numerus pertineat; conclusioque eo limitatur, ut sit vel vel .


54.

II. Iam sint omnes divisores numeri hi: etc. eritque, quia omnes numeri inter hos sunt distributi, At in art. 40 demonstravimus esse atque ex art. praec. sequitur, ipsi aut aequalem aut ipso minorem esse, maiorem esse non posse, similiterque de et , etc. Si itaque aliquis terminus ex his etc. termino respondente ex his , esset minor (sive etiam plures), illorum summa summae herum aequalis esse non posset. Unde tandem concludimus, ipsi semper esse aequalem, adeoque a magnitudine ipsius non pendere.


55.

Maximam autem attentionem meretur casus particularis propositionis prae-