40
de residuis potestatum.
Considerantur primo moduli qui sunt numeri primi.
49.
Theorema. Si est numerus primus ipsum non metiens, atque infima ipsius potestas secundum modulum unitati congrua, exponens aut erit aut pars aliquota huius numeri.
Conferantur exempla art. 45.
Demonstr. Quum iam ostensum sit, esse aut , aut , superest, ut in posteriori casu semper ipsius partem aliquotam esse evincatur.
I. Colligantur residua minima positiva omnium horum terminorum , quae per etc. designentur, ita ut sit , , etc. Perspicuum est, haec omnia fore diversa, si enim duo termini , eadem praeberent, foret (supponendo ) atque , Q. E. A. quum nulla inferior potestas quam unitati sit congrua (hyp.). Porro omnes etc. in serie numerorum continentur, quam tamen non exhaurient, quum . Complexum omnium etc. per designabimus. Comprehendet igitur terminos .
II. Accipiatur numerus quicunque ex his , qui in desit. Multiplicetur per omnes etc., sintque residua minima inde oriunda etc., quorum numerus etiam erit . At haec residua tum inter se quam ab omnibus etc. erunt diversa. Si enim prior assertio falsa esset, haberetur adeoque dividendo per , , contra ea quae modo demonstravimus; si vero posterior, haberetur , unde, quando , i. e. alicui ex his etc. congruus contra hyp.; quando vero , sequitur multiplicando per , , sive propter , , quae est eadem absurditas. Designetur complexus omnium etc., quorum multitudo , per , habebunturque iam numeri ex his . Quodsi igitur et omnes hos numeros complectuntur, fit adeoque theorema demonstratum.
III. Si vero aliqui adhuc deficiunt, sit horum aliquis . Per hunc
multiplicentur omnes etc., productorumque residua minima sint etc., omnium complexus per designetur. igitur comprehendet numeros
ex his , qui omnes tum inter se quam a numeris in et