Prop. XLIX. Theor. XVII.
Si rota globo concavo ad rectos angulos intrinsecus insistat & revolvendo progrediatur in circulo maximo; longitudo itineris curvilinei quod punctum quodvis in Rotæ Perimetro datum, ex quo globum tetigit, confecit, erit ad duplicatum sinum versum arcus dimidii qui globum toto hoc tempore inter eundum tetigit, ut differentia diametrorum globi & rotæ ad semidiametrum globi.
Sit ABL globus, C centrum ejus, BPV rota ei insistens, E centrum rotæ, B punctum contactus, & P punctum datum in perimetro rotæ. Concipe hanc Rotam pergere in circulo maximo ABL ab A per B versus L, & inter eundum ita revolvi ut arcus AB, PB sibi invicem semper æquentur, atq; punctum illud P in Perimetro rotæ datum interea describere viam curvilineam AP. Sit autem AP via tota curvilinea descripta ex quo Rota globum tetigit in A, & erit viæ hujus longitudo AP ad duplum sinum versum arcus PB, ut 2CE ad CB. Nam recta CE (si opus est producta) occurrat Rotæ in V, junganturq; CP, BP, EP, VP, & in CP productam demittatur Normalis VF. Tangant PH, VH circulum in P & V concurrentes in H, secetq; PH ipsam VF in G, & ad VP demittantur Normales GI, HK. Centro item C & intervallo quovis describatur circulus nom secans rectam CP in n, Rotæ perimetrum Bp in o & viam curvilineam AP in m, centroq; V & intervallo Vo describatur circulus secans VP productam in q.
Quoniam Rota eundo semper revolvitur circa punctum contactus B, manifestum est quod recta BP perpendicularis est ad lineam illam curvam AP, quam Rotæ punctum P describit, atq; adeo quod recta VP tanget hanc curvam in puncto P. Circuli nom radius sensim auctus æquetur tandem distantiæ