Tendat vis quælibet ad centrum C & invenienda sit Trajectoria VITKk. Detur circulus VXY centro C intervallo quovis CV descriptus, centroq; eodem describantur alii quivis circuli ID, KE trajectoriam secantes in I & K rectamq; CV in D & E. Age tum rectam CNIX secantem circulos KE, VY in N & X, tum rectam CKY occurrentem circulo VXY in Y. Sint autem puncta I & K sibi invicem vicinissima, & pergat corpus ab V per I, T & K ad k; sitq; A altitudo illa de qua corpus aliud cadere debet ut in loco D velocitatem acquirat æqualem velocitati corporis prioris in I; & stantibus quæ in Propositione XXXIX, quoniam lineola IK, dato tempore quam minimo descripta, est ut velocitas atq; adeo ut latus quadratum areæ ABFD, & triangulum ICK tempori proportionale datur, adeoq; KN est reciproce ut altitudo IC, id est, si detur quantitas aliqua Q, & altitudo IC nominetur A, ut ; quam nominemus Z. Ponamus eam esse magnitudinem ipsius Q ut sit in aliquo casu ad Z ut est IK ad KN, & erit semper ad Z ut IK ad KN, & ad ZZ ut IK quad. ad KN quad. & divisim ABFD−ZZ ad ZZ ut IN quad. ad KN quad. adeoq; ad Z ut IN ad KN, & propterea A×KN æquale . Unde cum YX×XC sit ad A×KN in duplicata ratione YC ad KC, erit rectang. YX×XC æquale . Igitur si in perpendiculo DF capiantur semper Db, Dc ipsis & æquales respective, & describantur curvæ lineæ ab, cd quas puncta b, c perpetuo tangunt; deq; puncto V ad lineam AC erigatur perpendiculum V ad abscindens areas curvilineas VDba, VDdc, & erigantur etiam ordinatæ Ez, Ex: quoniam rectangulum Db×IN seu DbzE æquale est dimidio rectanguli A×KN, seu triangulo ICK; & rectangulum Dc×IN seu Dc×E æquale est dimidio rect anguli YX in CX, seu triangulo XCY; hoc est, quoniam arearum VDba, VIC æquales semper sunt nascentes particulæ DbzE, ICK, & arearum VDcd, VCX æquales semper sunt nascentes particulæ DExc, XCY, erit area genita VDba æqualis areæ genitæ, VIC, adeoq; tempori proportionalis, & area genita VDdc æqualis Sectori genito VCX. Dato igitur tempore quovis ex quo corpus discessit de loco V, dabitur area ipsi proportionalis VDba, & inde dabitur corporis altitudo CD vel CI; & area VDcd, eiq; æqualis Sector VCX una cum ejus angulo VCI. Datis autem angulo VCI & altitudine CI datur locus I, in quo corpus completo illo tempore reperietur. Q. E. I.
Corol. 1. Hinc maximæ minimæq; corporum altitudines, id est Apsides Trajectoriarum expedite inveniri possunt. Incidunt enim Apsides in puncta illa in quibus recta IC per centrum ducta incidit perpendiculariter in Trajectoriam VIK: id quod fit ubi rectæ IK & NK æquantur, adeoq; ubi area ABFD æqualis est ZZ.
Corol. 2. Sed & angulus KIN, in quo Trajectoria alibi secat lineam illam IC, ex data corporis altitudine IC expedite invenitur, nimirum capiendo sinum ejus ad radium ut KN ad IK, id est ut Z ad latus quadratum areæ ABFD.
Corol. 3. Si centro C & vertice principali V describatur sectio quælibet Conica VRS, & a quovis ejus puncto R agatur Tangens RT occurrens axi infinite producto CV in puncto T; dein juncta CR ducatur recta CP, quæ æqualis sit abscissæ CT, angulumq; VCP Sectori VCR proportionalem constituat; tendat