Cadat corpus de loco quovis A secundum rectam AS; & centro virium S, intervallo AS, describatur circuli quadrans AE, sitq; CD sinus rectus arcus cujusvis AD, & corpus A, tempore AD, cadendo describet spatium AC, inq; loco C acquisierit velocitatem CD. Demonstratur eodem modo ex Propositione X. quo Propositio XXXII. ex Propositione XI. demonstrata fuit. Q. E. D.
Corol. 1. Hinc æqualia sunt tempora quibus corpus unum de loco A cadendo provenit ad centrum S, & corpus aliud revolvendo describit arcum quadrantalem ADE.
Corol. 2. Proinde æqualia sunt tempora omnia quibus corpora de locis quibusvis ad usq; centrum cadunt. Nam revolventium tempora omnia periodica (per Corol. 3. Prop. IV.) æquantur.
Prop. XXXIX. Prob. XXVII.
Posita cujuscunq; generis vi centripeta, & concessis figurarum curvilinearum quadraturis, requiritur corporis recta ascendentis vel descendentis tum velocitas in locis singulis, tum tempus quo corpus ad locum quemvis perveniet: Et contra.
De loco quovis A in recta ADEC cadat corpus E, deq; loco ejus E erigatur semper perpendicularis EG, vi centripetæ in loco illo ad centrum C tendenti proportionalis: Sitq; BFG linea curva quam punctum G perpetuo tangit. Coincidat autem EG ipso motus initio cum perpendiculari AB, & erit corporis velocitas in loco quovis E ut areæ curvilineæ ABGE latus quadratum. Q. E. I. In EG capiatur EM lateri quadrato areæ ABGE reciproce proportionalis, & sit ALM linea curva quam punctum M perpetuo tangit, & erit tempus quo corpus cadendo describit lineam AE ut area curvilinea ALME. Quod erat Inveniendum.
Etenim in recta AE capiatur linea quam minima DE datæ longitudinis, sitq; DLF locus lineæ EMG ubi corpus versabatur in D; & si ea sit vis centripeta, ut area ABGE latus quadratum sit ut descendentis velocitas, erit area ipsa in duplicata ratione velocitatis, id est, si pro velocitatibus in D & E scribantur V & V + I, erit area ABFD ut V2, & area ABGE ut V2+2VI+I2, & divisim area DFGE ut 2VI+I2, adeoq; ut , id est, si primæ quantitatum nascentium rationes sumantur, longitudo DF ut quantitas , adeoq; etiam ut quantitatis hujus dimidium . Est autem tempus quo corpus cadendo describit lineolam DE, ut lineola illa directe & velocitas V inverse, estq; vis ut velocitatis incrementum I directe & tempus inverse, adeoq; si primæ nascentium rationes sumantur, ut , hoc est, ut longitudo DF. Ergo vis ipsi DF vel EG proportionalis facit corpus ea cum velocitate descendere quæ sit ut areæ ABGE latus quadratum. Q.E.D.