Pagina:Principia newton la.djvu/65

Haec pagina emendata est

ducta & producta secabit tangentes parallelas CF, KL in punctis contactuum. Patet hoc per Corol. 2. Lem. XXIV. Eadem methodo invenire licet alia contactuum puncta, & tum demum per Casum 1. Prob. XIV. Trajectoriam describere. Q.E.F.

Schol.

Problemata, ubi dantur Trajectoriarum vel centra vel Asymptoti includuntur in præcedentibus. Nam datis punctis & tangentibus una cum centro, dantur alia totidem puncta aliæq; tangentes a centro ex altera ejus parte æqualiter distantes. Asymptotos autem pro tangente habenda est, & ejus terminus infinite distans (si ita loqui fas sit) pro puncto contactus. Concipe tangentis cujusvis punctum contactus abire in infinitum, & tangens vertetur in Asymptoton, atq; constructiones Problematis XV & Casus primi Problematis XIV vertentur in constructiones Problematum ubi Asymptoti dantur.

Postquam Trajectoria descripta est, invenire licet axes & umbilicos ejus hac methodo. In constructione & Figura Lemmatis XXI, fac ut angulorum mobilium PBN, PCN crura BP, CP quorum concursu Trajectoria describebatur sint sibi invicem parallela, eumq; servantia situm revolvantur circa polos suos B, C in figura illa. Interea vero describant altera angulorum illorum crura CN, BN concursu suo K vel k, circulum IBKGC. Sit circuli hujus centrum O. Ab hoc centro ad Regulam MN, ad quam altera illa crura CN, BN interea concurrebant dum Trajectoria describebatur, demitte normalem OH circulo occurrentem in K & L. Et ubi crura illa altera CK, BK concurrant ad punctum istud K quod Regulæ proprius est, crura prima CP, BP parallela erunt axi majori & perpendicularia minori; & contrarium eveniet si crura eadem concurrunt ad punctum remotius L. Unde si detur Trajectoriæ centrum, dabuntur axes. Hisce autem datis, umbilici sunt in promptu.

Axium vero quadrata sunt ad invicem ut KH ad LH, & inde facile est Trajectoriam specie datam per data quatuor puncta describere. Nam si duo ex punctis datis constituantur poli C, B, tertium dabit angulos mobiles PCK, PBK. Tum ob datam specie Trajectoriam, dabitur ratio OH ad OK, centroq; O & intervallo OH describendo circulum, & per punctum quartum agendo rectam quæ circulum illum tangat, dabitur regula MN cujus ope Trajectoria describatur. Unde etiam vicissim Trapezium specie datum (si casus quidam impossibiles excipiantur) in data quavis sectione Conica inscribi potest.

Sunt & alia Lemmata quorum ope Trajectoriæ specie datæ, datis punctis & tangentibus, describi possunt. Ejus generis est quod, si recta linea per punctum