SECT. II.
De Inventione Virium Centripetarum.
Prop. I. Theorema I.
Areas quas corpora in gyros acta radiis ad immobile centrum virium ductis describunt, & in planis immobilibus consistere, & esse temporibus proportionales.
Dividatur tempus in partes æquales, & prima temporis parte describat corpus vi insita rectam AB. Idem secunda temporis parte, si nil impediret, recta pergeret ad c, (per Leg. I) describens lineam Bc æqualem ipsi AB, adeo ut radiis AS, BS, cS ad centrum actis, consectæ forent æquales areæ ASB, BSc. Verum ubi corpus venit ad B, agat vis centripeta impulsu unico sed magno, faciatq; corpus a recta Bc deflectere & pergere in recta BC. Ipsi BS parallela agatur cC occurrens BC in C, & completa secunda temporis parte, corpus (per Legum Corol. I) reperietur in C, in eodem plano cum triangulo ASB. Junge SC, & triangulum SBC, ob parallelas SB, Cc, æquale erit triangulo SBc, atq; adeo etiam triangulo SAB. Simili argumento si vis centripeta successive agat in C, D, E, &c. faciens ut corpus singulis temporis particulis singulas describat rectas CD, DE, EF, &c. jacebunt hæ in eodem plano, & triangulum SCD triangulo SBC & SDE ipsi SCD & SEF ipsi SDE æquale erit. Æqualibus igitur temporibus æquales areæ in plano immoto describuntur: & componendo, sunt arearum summæ quævis SADS, SAFS inter se, ut sunt tempora descriptionum. Augeatur jam nu merus & minuatur latitudo triangulorum in infinitum, & eorum ultima perimeter ADF, (per Corollarium quartum Lemmatis tertii) erit linea curva; adeoq; vis centripeta qua corpus de tangente hujus curvæ perpetuo retrahitur, aget indesinenter; areæ vero quævis descriptæ SADS, SAFS temporibus descriptionum semper proportionales, erunt iisdem temporibus in hoc casu proportionales. Q.E.D.
Corol. 1. In mediis non resistentibus, si areæ non sunt temporibus proportionales, vires non tendunt ad concursum radiorum.
Corol. 2. In mediis omnibus, si arearum descriptio acceleratur, vires non tendunt ad concursum radiorum, sed inde declinant in consequentia.