autem in casu, angulus mPl est ad angulum PTM, quem Luna eodem tempore motu suo apparente circa Terram describit ut 1 ad 59,575. Nam angulus mPl æqualis est angulo LPM, id est angulo deflexionis Lunæ à recto tramite, quam præfata vis Solaris 3IT dato illo tempore generare possit; & angulus PTM æqualis est angulo deflexionis Lunæ à recto tramite, quem vis illa, qua Luna in Orbe suo retinetur, eodem tempore generat. Et hæ vires, uti supra diximus, sunt ad invicem ut 1 ad 59,575. Ergo cum motus medius horarius Lunæ (respectu fixarum) sit 32′ . 56′′ . 27′′′ . 12iv , motus horarius Nodi in hoc casu erit 33′′ . 10′′′ . 33iv . 12v . Aliis autem in casibus motus iste horarius erit ad 33′′ . 10′′′ . 33iv. 12v. ut contentum sub sinibus angulorum trium TPI, PTN, & STN (seu distantiarum Lunæ à Quadratura, Lunæ à Nodo & Nodi à Sole) ad cubum Radii. Et quoties signum anguli alicujus de affirmativo in negativum, deque negativo in affirmativum mutatur, debebit motus regressivus in progressivum & progressivus in regressivum mutari. Unde fit ut Nodi progrediantur quoties Luna inter Quadraturam alterutram & Nodum Quadraturæ proximum versatur. Aliis in casibus regrediuntur, & per excessum regressus supra progressum, singulis mensibus feruntur in antecedentia.
Corol. 1. Hinc si a dati arcus quam minimi PM terminis P & M ad lineam Quadraturas jungentem Qq demittantur perpendicula PK, Mk, eademque producantur donec secent lineam Nodorum Nn in D & d; erit motus horarius Nodorum ut area MPDd & quadratum lineæ AZ conjunctim. Sunto enim PK, PH & AZ prædicti tres Sinus. Nempe PK Sinus distantiæ Lunæ à Quadratura, PH Sinus distantiæ Lunæ à Nodo, & AZ Sinus distantiæ Nodi à Sole: & erit velocitas Nodi ut contentum PK×PH×AZ. Est autem PT ad PK ut PM ad Kk, adeoque ob datas PT & PM est Kk ipsi PK proportionalis. Est & AT ad PD ut AZ ad PH, & propterea PH rectangulo PD×AZ propor tionalis, & conjunctis rationibus, PK×PH est ut contentum Kk×PD×AZ, &PK×PH×AZ ut Kk×PD×AZqu. id est ut area PDdM, & AZ qu. conjunctim. Q. E. D.
Corol. 2. In data quavis Nodorum positione, motus horarius mediocris est semissis motus horarii in Syzygiis Lunæ, ideoque est ad 16′′ . 35′′′ . 16iv . 36v . ut quadratum Sinus distantiæ Nodorum à Syzygiis ad quadratum Radii, sive ut AZ qu. ad AT qu. Nam si Luna uniformi cum motu perambulet semicircu lum QAq, summa omnium arearum PDdM , quo tempore Luna pergit à Q ad M, erit area QMdE quæ ad circuli tangentem QE terminatur; & quo tempore Luna attingit punctum n, summa illa erit area tota EQAn quam linea PD describit; dein Luna pergente ab n ad q, linea PD cadet extra circulum, & aream nqe ad circuli tangentem qe terminatam describet; quæ, quoniam Nodi prius regrediebantur, jam verò progrediuntur, subduci debet de area priore, & cum æqualis sit areæ QEN, relinquet semicirculum NQAn. Igitur summa omnium