major est vel minor ex parte concava quàm ex parte convexa, prævalebit impressio fortior, & velocitatem Orbis vel accelerabit vel retardabit, prout in eandem regionem cum ipsius motu vel in contrariam dirigitur. Proinde ut orbis unusquisque in motu suo perseveret uniformiter, debebunt impressiones ex parte utraque sibi invicem æquari, & fieri in regiones contrarias. Unde cum impressiones sint ut contiguæ superficies & harum translationes ab invicem; erunt translationes inversè ut superficies, hoc est inversè ut quadrata distantiarum superficierum à centro. Sunt autem differentiæ motuum angularium circa axem ut hæ translationes applicatæ ad distantias, sive ut translationes directè & distantiæ inversè; hoc est (conjunctis rationibus) ut cubi distantiarum inversè. Quare si ad rectæ infinitæ SABCDEQ partes singulas erigantur perpendicula Aa, Bb, Cc, Dd, Ee, &c. ipsarum SA, SB, SC, SD, SE, &c. cubis reciprocè proportionalia, erunt summæ distantiarum, hoc est, motus toti angulares, ut respondentes summæ linearum Aa, Bb, Cc, Dd, Ee: id est (si ad constituendum Medium uniformiter fluidum, numerus Orbium augeatur & latitudo minuatur in infinitum) ut areæ Hyperbolicæ his summis analogæ AaQ, BbQ, CcQ, DdQ, EeQ, &c. Et tempora periodica motibus angularibus reciprocè proportionalia erunt etiam his areis reciprocè proportionalia. Est igitur tempus periodicum orbis cujusvis DI O reciprocè ut area DdQ, hoc est, (per notas Curvarum quadraturas) directè ut quadratum distantiæ SD. Id quod volui primò demonstrare.
Cas. 2. A centro Sphæræ ducantur infinitæ rectæ quam plurimæ, quæ cum axe datos contineant angulos, æqualibus differentiis se mutuò superantes; & his rectis circa axem revolutis concipe orbes in annulos innumeros secari; & annulus unusquisque habebit annulos quatuor sibi contiguos, unum interiorem, alterum exteriorem & duos laterales. Attritu interioris & exterioris non potest annulus unusquisque, nisi in motu juxta legem casus primi facto, æqualiter & in partes contrarias urgeri. Patet hoc ex demonstratione casus primi. Et propterea annulorum series quælibet à globo in infinitum rectà pergens movebitur pro lege casus primi, nisi quatenus impeditur ab attritu annulorum ad latera. At in motu hac lege facto, attritus annulorum ad latera nullus est, neque adeò motum, quo minus hac lege fiat, impediet. Si annuli, qui à centro æqualiter distant, vel citiùs revolverentur vel tardiùs juxta polos quàm juxta æquatorem; tardiores accelerarentur, & velociores retardarentur ab attritu mutuo, & sic vergerent semper tempora periodica ad æqualitatem, pro lege casus primi. Non impedit igitur hic attritus quo minus motus fiat secundum legem casus primi, & propterea lex illa obtinebit: hoc est annulorum singulorum tempora periodica erunt ut quadrata distantiarum ipsorum à centro globi. Quod volui secundo demonstrare.
Cas. 3. Dividatur jam annulus unusquisque sectionibus transversis in particulas innumeras constituentes substantiam absolutè & uniformiter fluidam; & quoniam hæ sectiones non spectant ad legem motus circularis, sed ad constitutionem fluidi solummodo conducunt, perseverabit motus circularis ut priùs. His sectionibus annuli omnes quamminimi asperitatem & vim attritus mutui aut non mutabunt aut mutabunt æqualiter. Et manente causarum proportione manebit effectuum proportio, hoc est proportio motuum & periodicorum temporum. Q. E. D. Cæterum cum motus circularis, & abinde orta vis centrifuga,