æquetur; peraget hæc vibrationes singulas quo tempore eadem in Cycloide, cujus Perimeter tota longitudini PS æqualis est, oscillari posset: id adeo quia vires æquales æqualia corpuscula per æqualia spatia simul impellent. Quare cum oscillationum tempora sint in dimidiata ratione longitudinis pendulorum, & longitudo penduli æquetur dimidio arcui Cycloidis totius; foret tempus vibrationis unius ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione longitudinis PS seu PO ad longitudinem A. Sed vis Elastica qua lineola Physica EG, in locis suis extremis P, S existens, urgetur, erat (in demonstratione Propositionis superioris) ad ejus vim totam Elasticam ut HL−KN ad V, hoc est (cum punctum K jam incidat in P) ut HK ad V: & vis illa tota, hoc est pondus incumbens, qua lineola EG comprimitur, est ad pondus lineolæ ut ponderis incumbentis altitudo A ad lineolæ longitudinem EG; adeoque ex æquo, vis qua lineola EG in locis suis P & S urgetur, est ad lineolæ illius pondus ut HK×A ad V×EG. Quare cum tempora, quibus æqualia corpora per æqualia spatia impelluntur, sint reciproce in dimidiata ratione virium, erit tempus vibrationis unius urgente vi illa Elastica, ad tempus vibrationis urgente vi ponderis, in dimidiata ratione V×EG ad HK×A, atque adeo ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione V×EG ad HK×A & PO ad A conjunctim; id est (cùm fuerit, in superiore Propositione, V æqualis , & HK æqualis ) in dimidiata ratione ad seu POqu.×BCqu. ad Zqu.×Aqu. hoc estin ratione PO×BC ad Z×A, seu BC ad . Sed tempore vibrationis unius ex itu & reditu compositæ, pulsus progrediendo conficit latitudinem suam BC. Ergo tempus quo pulsus percur rit spatium BC, est ad tempus oscillationis unius ex itu & reditu compositæ, ut BC ad , id est ut BC ad circumferentiam circuli cujus radius est A. Tempus autem, quo pulsus percurret spatium BC, est ad tempus quo percurret longitudinem huic circumferentiæ æqualem, in eadem ratione; ideoque tempore talis oscillationis pulsus percurret longitudinem huic circumferentiæ æqualem. Q.E.D.
Prop. L. Prob. XIII.
Invenire pulsuum distantias.
Corporis, cujus tremore pulsus excitantur, inveniatur numerus Vibrationum dato tempore. Per numerum illum dividatur spatium quod pulsus eodem tempore percurrere possit, & pars inventa erit pulsus unius latitudo. Q. E. I.
Schol.
Spectant Propositiones novissimæ ad motum Lucis & Sonorum. Lux enim cum propagetur secundum lineas rectas, in actione sola (per Prop. XLI. & XLII.) consistere nequit. Soni vero propterea quod a corporibus tremulis oriantur, nihil aliud sunt quàm aeris pulsus propagati, per Prop. XLIII. Confirmatur id ex tremoribus quos excitant in corporibus objectis, si modò vehementes sint &