proportionales. Proinde si ex æquali particularum numero componantur tempora quælibet æqualia, erunt velocitates ipsis temporum initiis, ut termini in progressione continua, qui per saltum capiuntur, omisso passim æquali terminorum intermediorum numero. Componuntur autem horum terminorum rationes ex æqualibus rationibus terminorum intermediorum æqualiter repetitis, & propterea sunt æquales. Igitur velocitates his terminis proportionales, sunt in progressione Geometrica. Minuantur jam æquales illæ temporum particulæ, & augeatur earum numerus in infinitum, eo ut resistentiæ impulsus reddatur continuus, & velocitates in principiis æqualium temporum, semper continue proportionales, erunt in hoc etiam Cas. continue proportionales. Q. E. D.
Cas. 2. Et divisim velocitatum differentiæ, hoc est earum partes singulis temporibus amissæ, sunt ut totæ: Spatia autem singulis temporibus descripta sunt ut velocitatum partes amissæ, (per Prop. I. Lib. II.) & propterea etiam ut totæ. Q. E. D.
Corol. Hinc si Asymptotis rectangulis ADC, CH describatur Hyperbola BG, sintq; AB, DG ad Asymptoton AC perpendiculares, & exponatur tum corporis velocitas tum resistentia Medii, ipso motus initio, per lineam quamvis datam AC, elapso autem tempore aliquo per lineam indefinitam DC: exponi potest tempus per aream ABGD, & spatium eo tempore descriptum per lineam AD. Nam si area illa per motum puncti D augeatur uniformiter ad modum temporis, decrescet recta DC in ratione Geometrica ad modum velocitatis, & partes rectæ AC æqualibus temporibus descriptæ decrescent in eadem ratione.
Prop. III. Prob. I.
Corporis, cui dum in Medio similari recta ascendit vel descendit, resistitur in ratione velocitatis, quodq; ab uniformi gravitate urgetur, definire motum.
Corpore ascendente, exponatur gravitas per datum quodvis rectangulum BC, & resistentia Medii initio ascensus per rectangulum BD sumptum ad contrarias partes. Asymptotis rectangulis AC, CH, per punctum B describatur Hyperbola secans perpendicula DE, de in G, g; & corpus ascendendo, tempore DGgd, describet spatium EGge, tempore DGBA spatium ascensus totius EGB, tempore AB2G2D spatium descensus BF2G, atq; tempore 2D2G2g2d spatium descensus 2GF2e2g: & velocitates corporis (resistentiæ Medii proportionales) in horum temporum periodis erunt ABED, ABed, nulla, ABF2D, AB2e2d respective; atq; maxima velocitas, quam corpus descendendo potest acquirere, erit BC.
Resolvatur enim rectangulum AH in rectangula innumera Ak, Kl, Lm, Mn, &c. quæ sint ut incrementa velocitatum æqualibus totidem temporibus facta; & erunt nihil, Ak, Al, Am, An, &c. ut velocitates totæ, atq; adeo (per Hypothesin)