& f. Demittantur etiam ad diametros perpendicula IQ, iq; & ob æquales DS & ds, ES & es, & angulos evanescentes DPE & dpe, lineæ PE, PF & pe, pf & lineolæ DF, df pro æqualibus habeantur: quippe quarum ratio ultima, angulis illis DPE, dpe simul evanescentibus, est æqualitatis. His itaq; constitutis, erit PI ad PF ut RI ad DF, & pf ad pi ut DF vel df ad ri; & ex æquo PI×pf ad PF×pi ut RI ad ri, hoc est (per Corol. 3. Lem. VII.) ut arcus IH ad arcum ih. Rursus PI ad PS ut IQ ad SE, & ps ad pi ut SE vel se ad iq; & ex æquo PI×ps ad PS×pi ut IQ ad iq. Et conjunctis rationibus PI quad.×pf×ps ad pi quad.×PF×PS, ut IH×IQ ad ih×iq; hoc est, ut superficies circularis, quam arcus IH convolutione semicirculi AKB circa diametrum AB describet, ad superficiem circularem, quam arcus ih convolutione semicirculi akb circa diametrum ab describet. Et vires, quibus hæ superficies secundum lineas ad se tendentes attrahunt corpuscula P & p, sunt (per Hypothesin) ut ipsæ superficies applicatæ ad quadrata distantiarum suarum a corporibus, hoc est, ut pf×ps ad PF×PS. Suntq; hæ vires ad ipsarum partes obliquas quæ (facta per Legum Corol. 2 resolutione virium) secundum lineas PS, ps ad centra tendunt, ut PI ad PQ, & pi ad pq; id est (ob similia triangula PIQ & PSF, piq & psf) ut PS ad PF & ps ad pf. Unde ex æquo fit attractio corpusculi hujus P versus S ad attractionem corpusculi p versus s, ut ad , hocesut ps quad. ad PS quad. Et simili argumento vires, quibus superficies convolutione arcuum KL, kl descriptæ trahunt corpuscula, erunt ut ps quad. ad PS quad.; inq; eadem ratione erunt vires superficierum omnium circularium in quas utraq; superficies Sphærica, capiendo semper sd=SD & se=SE, distingui potest. Et per Compositionem, vires totarum superficierum Sphæricarum in corpuscula exercitæ erunt in eadem ratione. Q. E. D.
Prop. LXXII. Theor. XXXII.
Si ad Spheræ cujusvis puncta singula tendant vires æquales centripetæ decrescentes in duplicata ratione distantiarum a punctis, ac detur ratio diametri Spheræ ad distantiam corpusculi a centro ejus; dico quod vis qua corpusculum attrahitur proportionalis erit semi diametro Sphæræ.
Nam concipe corpuscula duo seorsim a Sphæris duabus attrahi, & distantias a centris proportionales esse diametris, Sphæras autem resolvi in particulas similes & similiter positas ad corpuscula. Hinc attractiones corpusculi unius, factæ versus singulas particulas Sphæræ unius, erunt ad attractiones alterius versus analogas totidem particulas Sphæræ alterius, in ratione composita ex ratione particularum directe & ratione duplicata distantiarum inverse. Sed particulæ sunt ut Sphæræ, hoc est in ratione triplicata diametrorum, & distantiæ sunt ut diametri, & ratio prior directe una cum ratione posteriore bis inverse est ratio diametri ad diametrum. Q. E. D.
Corol. 1. Hinc si corpuscula in circulis circa Sphæras ex materia æqualiter attractiva constantes revolvantur, sintq; distantiæ a centris Sphærarum proportionales earundem diametris; tempora periodica erunt æqualia.
Corol. 2. Et vice versa, si tempora periodica sunt æqualia; distantiæ erunt proportionales diametris. Constant hæc duo per Corol. 3. Theor. IV.