SECT. XII.
De Corporum Sphæricorum Viribus attractivis.
Prop. LXX. Theor. XXX.
Si ad Sphæricæ superficiei puncta singula tendant vires æquales centripetæ decrescentes in duplicata ratione distantiarum a punctis: dico quod corpusculum intra superficiem constitutum his viribus nullam in partem attrahitur.
Sit HIKL superficies illa Sphærica, & P corpuscu lum intus constitutum. Per P agantur ad hanc superfi ciem lineæ duæ HK, IL, arcus quam minimos HI, KL intercipientes; & ob triangula HPI, LPK (per Corol. 3. Lem. VII.) similia, arcus illi erunt distantiis HP, LP proportionales, & superficiei Sphæricæ particulæ quævis, ad HI & KL rectis per punctum P transeun tibus undiq; terminatæ, erunt in duplicata illa ratione. Ergo vires harum particularum in corpus P exercitæ sunt inter se aquales. Sunt enim ut particulæ directe & quadrata distantiarum inverse. Et hæ duæ rationes componunt rationem æqualitatis. Attractiones igi tur in contrarias partes æqualiter factæ se mutuo destruunt. Et simili argumento attractiones omnes per totam Sphæricam superficiem a contrariis attractionibus destruuntur. Proinde corpus P nullam in partem his attractionibus impellitur. Q.E.D.
Prop. LXXI. Theor. XXXI.
Iisdem positis, dico quod corpusculum extra Sphæricam superficiem constitu tum attrahitur ad centrum Sphæræ, vi reciproce proportionali quadrato distantiæ suæ ab eodem centro.
Sint AHKB, ahkb æquales duæ superficies Sphæricæ, centris S, s, diametris AB, ab descriptæ, & P, p corpuscula sita extrinsecus in diametris illis productis. Agantur a corpusculis lineæ PHK, PIL, phk, pil, auferentes a circulis maximis AHB, ahb, æquales arcus quam minimos HK, hk & HL, hl: Et ad eas demit tantur perpendicula SD, sd; SE, se; IR, ir; quorum SD, sd secent PL, pl in F