describunt circum se mutuo: proindeq; (per Theor. XX.) similis curvis ST & PQV , quas eadem corpora describunt circum commune gravitatis centrum C: id adeo quia proportiones linearum SC, CP & SP vel sp ad invicem dantur.
Cas. 1. Commune illud gravitatis centrum C, per Legum Corollarium quartum, vel quiescit vel movetur uniformiter in directum. Ponamus primo quod id quiescit, inq; s & p locentur corpora duo, immobile in s, mobile in p, corporibus S & P similia & æqualia. Dein tangant rectæ PR & pr Curvas PQ & pq in P & p, & producantur CQ & sq ad R & r. Et ob similitudinem figurarum CPRQ, sprq, erit RQ ad rq ut CP ad sp, adeoq; in data ratione. Proinde si vis qua Corpus P versus Corpus S, atq; adeo versus centrum intermedium C attrahitur, esset ad vim qua corpus p versus centrum s attrahitur in eadem illa ratione data, hæ vires æqualibus temporibus attraherent semper corpora de tangentibus PR, pr ad arcus PQ, pq, per intervalla ipsis proportionalia RQ, rq; adeoq; vis posterior efficeret ut corpus p gyraretur in curva pqv, quæ similis esset curvæ PQV, in qua vis prior efficit ut corpus P gyretur, & revolutiones iisdem temporibus complerentur. At quoniam vires illæ non sunt ad invicem in ratione CP ad sp, sed (ob similitudinem & æqualitatem corporum S & s, P & p, & æqualitatem distantiarum SP, sp) sibi mutuo æquales, corpora æqualibus temporibus æqualiter trahentur de Tangentibus; & propterea ut corpus posterius p trahatur per intervallum majus rq, requiritur tempus majus, idq; in dimidiata ratione intervallorum; propterea quod, per Lemma decimum, spatia ipso motus initio descripta sunt in duplicata ratione temporum. Ponatur igitur velocitas corporis p esse ad velocitatem corporis P in dimidiata ratione distantiæ sp ad distantiam CP, eo ut temporibus quæ sint in eadem dimidiata ratione describantur arcus PQ, pq, qui sunt in ratione integra: Et corpora P, p viribus æqualibus semper attracta describent circum centra quiescentia C & s figuras similes PQV, pqv, quarum posterior pqv similis est & æqualis figuræ quam corpus P circum corpus mobile S describit. Q. E. D.
Cas. 2. Ponamus jam quod commune gravitatis centrum, una cum spatio in quo corpora moventur inter se, progreditur uniformiter in directum; &, per Legum Corollarium sextum, motus omnes in hoc spatio peragentur ut prius, adeoq; corpora describent circum se mutuo figuras easdem ac prius, & propterea figuræ pqv similes & æquales. Q. E. D.
Corol. 1. Hinc corpora duo viribus distantiæ suæ proportionalibus se mutuo trahentia, describunt (per Prop. X.) & circum commune gravitatis centrum, & circum se mutuo, Ellipses concentricas: & vice versa, si tales figuræ describuntur, sunt vires distantiæ proportionales.
Corol. 2. Et corpora duo viribus quadrato distantiæ suæ reciproce proportionalibus describunt (per Prop. XI, XII, XIII.) & circum commune gravitatis centrum, & circum se mutuo sectiones conicas umbilicos habentes in centro circum quod figuræ describuntur. Et vice versa, si tales figuræ describuntur, vires centripetæ sunt quadrato distantiæ reciproce proportionales.