Pagina:Le opere di Galileo Galilei I.djvu/301

Haec pagina emendata est
298
de motu.

itaque ostendamus, mobile in puncto s minus esse grave quam in puncto d, erit iam manifestum quod illius motus erit tardior per lineam gh quam per ef: quod si, rursus, ostendamus, in r mobile adhuc minus esse grave quam in puncto s, erit iam manifestum quod tardior erit motus per lineam nt quam per gh. Atque iam manifestum est, mobile in puncto r minus gravare quam in puncto s; et in s, quam in d, Pondus enim in puncto d aequeponderat ponderi in puncto c, cum distantiae ca, ad sint aequales: sed pondus in puncto s non aequiponderat ponderi c. Ducta enim linea ex puncto s perpendiculari super cd, pondus in s, respectu ponderis in c, est ac si penderet ex p; sed pondus in p minus gravat quam pondus in c, cum distantia pa sit minor distantia ac. Et, similiter, pondus in r minus gravat quam pondus in s: quod itidem patebit ducta perpendiculari ex r super ad, quae secabit ipsam ad inter puncta a,p. Manifestum est igitur quod mobile maiori vi descendet per lineam ef quam per lineam gh, et per gh quam per nt. Sed quanto maiori vi moveatur per ef quam per gh, ita innotescet: extensa, scilicet, linea ad extra circulum, quae secet lineam gh in puncto q. Et quia tanto facilius descendit mobile per lineam ef quam per gh, quanto gravius est in puncto d quam in puncto s; est autem tanto gravius in puncto d quam in s, quanto longior est linea da quam linea ap; ergo mobile eo facilius descendet per lineam ef quam per gh, quo linea da longior est ipsa pa. Eandem ergo proportionem habebit celeritas in ef ad celeritatem in gh, quam linea da ad lineam pa. Est autem sicut da ad ap ita qs ad sp, hoc est obliquus descensus ad rectum descensum: constat igitur, tanto minori vi trahi sursum idem pondus per inclinatum ascensum quam per rectum, quanto rectus ascensus minor est obliquo; et, consequenter, tanto maiori vi descendere idem grave per rectum descensum quam per inclinatum, quanto maior est inclinatus descensus quam rectus. Sed haec demonstratio intelligenda est nulla existente accidentali resistentia (aut mobilis, aut plani inclinati, asperitas; vel etiam mobilis figura): sed supponendum est, planum esse quodammodo incorporeum, vel saltem exactissime expolitum et durum, ne, dum mobile super planum gravat, inclinaret planum, et, quodammodo tanquam in fovea, in eo quiesceret. Necesse est etiam, mobile esse expolitissimum, et figura quae motui non resistat, qualis

7. equaeponderat – 9. equiponderat – 10. est sicut ac – 31. resistentia si[cut] aut